Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Orbital milling method of aircraft skins trimming
DONG Hui yue1, ZHU Ling sheng1, ZHANG Ming1, LI Shao bo2, LUO Shui jun2
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, College of Mechanical Engineering,
Zhejiang University, Hangzhou 310027, China;2. Chengdu Civil Aircraft Company Limited, Chengdu 610073, China
Download:   PDF(2464KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
An orbital milling method based on industrial robot was presented to trim aircraft skins automatically. First, the orbital milling parameters were studied through orthogonal experiment design  the empirical models of circumferential milling force and surface roughness were established. Then, the spindle speed, orbital speed, feed rate per revolution, feed rage per tooth the depth of cut were studied by range analysis. Relative sensitivity model shows that the feed rate per revolution has the most significant effect on the circumferential milling force and surface roughness. Considering the requirements of both processing quality and efficiency, the optimal set of process parameters was obtained verified by experimen. Results in dicate that the experiment system of robot milling skin works steadily and reliably, the machining efficiency is 48 mm/min, the contour accuracy is ±0.15 mm, and the roughness is less than 4 μm, even without burr. The proposed system provides a new automatic method for aircraft skins trimming.


Published: 01 November 2015
CLC:  TH 166  
Cite this article:

DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2033-2039.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.11.002     OR     http://www.zjujournals.com/eng/Y2015/V49/I11/2033


飞机蒙皮切边的螺旋铣削方法

为实现飞机蒙皮的自动化切边, 提出基于工业机器人的螺旋铣削方法. 针对螺旋铣削加工参数进行正交试验研究, 建立周向铣削力和表面粗糙度的经验模型, 并对刀具自转转速、公转转速、每公转进给量、每齿进给量及铣削深度5个加工参数进行极差分析, 利用相对灵敏度模型确定每公转进给量是影响周向铣削力和表面粗糙度最为显著的因素. 综合考虑加工质量与效率要求, 优选加工参数并进行试验验证. 实验结果表明: 机器人铣削蒙皮试验系统加工性能稳定, 加工效率达48 mm/min, 轮廓精度达±0.15 mm, 表面粗糙度在4 μm以内, 切边无毛刺, 实现了高效精确的蒙皮自动化切边, 为飞机蒙皮切边提供了一种新的方法.
[1] 胡福文, 李东升, 李小强, 等. 蒙皮柔性夹持数控切边的工艺设计方法[J]. 北京航空航天大学学报, 2012, 38(5): 675-680.
HU Fu wen, LI Dong sheng, LI Xiao qiang, et al. Process planning of aircraft skins NC trimming based on reconfigurable fixture [J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 675-680.
[2] 李东升, 罗红宇, 王丽丽, 等. 飞机蒙皮的数字化成形制造技术[J]. 塑性工程学报, 2009, 16(1):82-87.
LI Dong sheng, LUO Hong yu, WANG Li li, et al. Numerical forming technology of the aircraft skin [J]. Journal of Plasticity Engineering, 2009, 16(1): 82-87.
[3] 胡福文, 李东升, 李小强, 等. 面向飞机蒙皮柔性夹持数控切边的定位仿真系统及应用[J].计算机集成制造系统. 2012, 18(5): 993-998.
HU Fu wen, LI Dong sheng, Li Xiao qiang, et al. Locating simulation for aircraft skins NC trimming based on flexible holding fixture [J]. Computer Integrated Manufacturing Systems, 2012, 18(5): 993-998.
[4] BRUCE M. Robotics seeks its role in aerospace [J]. Manufacturing Engineering, 2007, 139(4): AAC1-AAC4.
[5] 秦瑞祥, 邹冀华. 工业机器人在飞机数字化装配中的应用[J]. 航空制造技术, 2010, 23: 104-108.
QIN Rui xiang, ZOU Yi hua. Application of industrial robot in aircraft digital assembly [J]. Aeronautical Manufacturing Technology, 2010, 23: 104-108.
[6] PAN Zeng xi, ZHANG Hui, ZHU Zhen qi, et al. Chatter analysis of robotic machining process [J]. Journal of Materials Processing Technology, 2006, 173: 301-309.
[7] 刘楚辉, 姚宝国, 柯映林. 工业机器人切削加工离线编程研究[J]. 浙江大学学报:工学版, 2010, 44(3): 426-431.
LIU Chu hui, YAO Bao guo, KE Ying lin. Study on off line programming of industrial robot for cutting process [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(3): 426-431.
[8] JASON M, MARTIN D, CLAUDE P. CAM based planning, programming and execution of large scale machining operations by a robot mounted gantry system [J]. SAE International, 2011(01)26-51.
[9] MATSUOKA S, SHIMIZU K, YAMAZAKI N, et al. High speed end milling of an articulated robot and its characteristics [J]. Journal of Materials Processing Technology, 1999, 95: 83-89.
[10] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2006: 254-256.
[11] 田荣鑫, 姚倡锋, 黄新春, 等. 面向加工表面粗糙度的钛合金高速铣削工艺参数区间敏感性及优选[J]. 航空学报, 2010, 31(12): 2464-2470.
TIAN Rong xin, YAO Chang feng, Huang Xin chun, et al. Process parameter interval sensitivity and optimization of machined surface roughness for high speed milling of titanium alloys [J]. Acta Aeronautica Et Astronautica Sinica, 2010, 31(12): 2464-2470.
[1] LUO Shi jian, DONG Ye nan. Classifying cultural artifacts knowledge for creative design[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 113-123.
[2] WANG Yue, SU Hong ye, SHAO Han shan, LU Shan, XIE Lei. Integration of production planning and scheduling under demand and utility uncertainties[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 57-67.
[3] WEN Xian he, ZHOU Xiao jun, YANG Chen long. Construction method of vehicle test service platform based on cloud manufacturing model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(12): 2254-2261.
[4] LIU Zheng hong, XIE Qing sheng, LI Shao bo, LIN Li. User needs matching based on latent semantic analysis and kansei engineering[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 224-233.
[5] ZHU Shang-shang, LUO Shi-jian. Re-creation of heritage elements based on design semiotics in product design[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(11): 2065-2070.
[6] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(5): 782-789.
[7] Sarina, ZHANG Shu-you. Conjoint variable weight group decision method for complex product scheme design[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 711-719.
[8] ZHANG Wei, PAN Xiao-hong, WANG Zheng-xiao, TIAN Jing-hong,WU Peng-cheng. Manufacturing services development strategy based on
information entropy immune optimization
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(11): 1908-1912.
[9] QIU Qing-ying, ZHANG Hui, FENG Pei-en. Method to aid product innovation by patent knowledge[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(2): 228-233.
[10] BAI Ao, TANG Lin-Zhong, WANG Zhi-Guo, et al. Multi-layered model for radio frequency identification adoption oriented to discrete manufacturing enterprise[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(12): 2196-2202.
[11] LIU Jiang, CHEN Ji-Xi, GU Xin-Jian, et al. Knowledge network guided by technology roadmap[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(12): 2218-2224.
[12] XU He-Hang, GU Xin-Jian, QI Guo-Ning, et al. Enterprise collaborative platform for patents analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(10): 1853-1857.